found in the five-coordinate N, N, N^{\prime}-tris[2 -(2^{\prime} -pyridyl)ethyl]ethane-1,2-diaminenickel(II) perchlorate of 2.011-2.124 \AA (Hoskins \& Whillans, 1975).

References

Campana, C. F., Shepard, D. F. \& Litchman, W. M. (1981). Inorg. Chem. 20, 4039-4044.
Hoskins, B. F. \& Whillans, F. D. (1975). J. Chem. Soc. Dalton Trans. pp. 657-661.

Karlin, K. D., Gultneh, Y., Hayes, J. C. \& Zubieta, J. (1984). Inorg. Chem. 23, 521-523.
Karlin, K. D., Haka, M. S., Cruse, R. W., Meyer, G. J., Farooq, A., Gultneh, Y., Hayes, J. C. \& Zubieta, J. (1988). J. Am. Chem. Soc. 110, 1196-1207.

Karlin, K. D., Shi, J., Hayes, J. C., McKown, J. W., Hutchinson, J. P. \& Zubieta, J. (1984). Inorg. Chim. Acta, 91, L3-L7.
Sahni, S. K. \& Reedijk, J. (1988). Inorg. Chim. Acta, 150, 169-172.
Sheldrick, G. M. (1985). SHELXTL Users Manual. Revision 5.1. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1991). C47, 2457-2459

Structure of 3,3'-Dimethyl-4,4'-diphenyl-2,2',5,5'-tetrathiafulvalenium Octachlorodirhenate-Dichloromethane (1/2)

By Mohammed Fettouhi, Lahcène Ouahab,* André Perrin and Daniel Grandjean
Laboratoire de Chimie du Solide et Inorganique moléculaire, URA 254, CNRS, Université de Rennes 1, 35042 Rennes CEDEX, France

and Jean Marc Fabre
Laboratoire de Chimie Organique Structurale, USTL, Place E. Bataillon, 34060 Montpellier CEDEX, France
(Received 6 May 1991; accepted 21 June 1991)

Abstract

C}_{20} \mathrm{H}_{16} \mathrm{~S}_{4}^{+} . \mathrm{Re}_{2} \mathrm{Cl}_{8}^{2-} .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad M_{r}=\) 1595.10, triclinic, $P \overline{\mathrm{I}}, a=9.969$ (9), $b=10.656$ (8), c $=13.570(8) \AA, \alpha=105.01(6), \beta=102.58$ (6), $\gamma=$ 91.58 (5) ${ }^{\circ}, V=1353.5 \AA^{3}, Z=1, D_{x}=1.957 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71073 \AA, \mu=133.61 \mathrm{~cm}^{-1}, F(000)=$ $770, T=293 \mathrm{~K}, R=0.036$ for 2801 reflections with I $\geq 6 \sigma(I)$. The methyl and phenyl groups are trans to each other with respect to the central tetrathiafulvalene part. The structure consists of isolated organic dimers. The eclipsed intradimer overlap of organic molecules implies short $\mathrm{S} \cdots \mathrm{S}$ contacts ranging from 3.47 to $3.52 \AA$. The $\operatorname{Re}-\operatorname{Re}$ bond lengths in the $\mathrm{Re}_{2} \mathrm{Cl}_{8}^{2-}$ dianion are close to those commonly observed for an $\mathrm{Re}-\mathrm{Re}$ quadruple bond in such a unit.

Experimental. Dimethyldiphenyltetrathiafulvalene (DMDPhTTF) was prepared as described by Takamisawa \& Hirai (1969). Its anodic oxidation ($10^{-3} M$) on a platinium-wire electrode under low constant current ($I=1.0 \mu \mathrm{~A}$) in a dichloromethane solution of the octachlorodirhenate tetrabutylammonium salt $\left(10^{-2} M\right)$, which also acted as supporting electrolyte leads, produced blue needle crystals ($1-2 \mathrm{~mm}$ long) after two weeks. A crystal of dimensions $0.8 \times 0.1 \times 0.25 \mathrm{~mm}$ was selected for the

[^0]0108-2701/91/112457-03\$03.00
intensity-data collections which were carried out on an Enraf-Nonius CAD-4 diffractometer equipped with graphite-monochromatized Mo $K \alpha$ radiation. The cell dimensions were obtained and refined by least squares from setting angles of 25 centered reflections $\left(\theta \leq 15^{\circ}\right) .4759$ reflections were recorded by a $\theta-2 \theta$ scan in the range $2 \leq 2 \theta \leq 50^{\circ}$ and $0 \leq h$ $\leq 11,-12 \leq k \leq 12,-16 \leq l \leq 16$. Three standard reflections measured every hour: no fluctuations in intensity. The intensities were corrected for Lorentzpolarization and absorption phenomena. The latter correction was performed using the DIFABS procedure (Walker \& Stuart, 1983) (correction factors $0 \cdot 783-1 \cdot 300$). The structure was solved by direct methods (MULTAN84; Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1984) and successive Fourier difference syntheses. 2801 independent reflections with $I \geq 6 \sigma(I)$, after averaging the symmetry-related reflections ($R_{\text {int }}=0.036$), were used for the full-matrix least-squares anisotropic ($\beta_{i j}$) refinements (on F), secondary extinction refined, $g=3.75 \times 10^{-10}, R=0.036, w R=0.047, w$ $=4 F_{o}^{2} /\left[\sigma(I)^{2}+\left(0.07 F_{o}^{2}\right)^{2}\right], S=1 \cdot 12,(\Delta / \sigma)_{\max }=0.01$, $(\Delta \rho)_{\text {max }}=1.28 \mathrm{e}^{\AA^{-3}}$. H atoms were placed at computed positions $\left[d(\mathrm{C}-\mathrm{H})=1.0 \AA ; B_{\text {eq }}=5.0 \AA^{2}\right]$ and not refined. The scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). All the calculations were performed on a

Table 1. Atomic coordinates and equivalent isotropic temperature factors

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	\boldsymbol{x}	y	z	$B_{\text {eq }}\left(\AA^{2}{ }^{2}\right)$
Rel	-0.09416 (4)	-0.05211 (4)	0.00696 (3)	2.336 (7)
Cll	-0.0617 (3)	-0.0209 (3)	0.1855 (2)	$3 \cdot 77$ (6)
Cl2	-0.0374 (3)	-0.2636 (2)	-0.0017 (2)	4.00 (6)
Cl3	-0.2462 (3)	0.1086 (2)	0.0231 (2)	3.41 (6)
Cl4	-0.2195 (3)	-0.1329 (3)	-0.1647 (2)	$3 \cdot 72$ (6)
S1	0.7200 (3)	0.6360 (2)	0.1566 (2)	$3 \cdot 18$ (6)
S2	0.5599 (3)	0.5482 (2)	-0.1783 (2)	$3 \cdot 20$ (6)
S3	0.7297 (3)	0.4070 (2)	-0.0517 (2)	3.09 (6)
S4	0.5545 (3)	0.7770 (2)	0.0279 (2)	$3 \cdot 20$ (6)
Cl	0.680 (1)	0.7905 (9)	0.2204 (7)	$2 \cdot 9$ (2)
C2	0.741 (1)	0.834 (1)	0.3354 (8)	$4 \cdot 2$ (3)
C3	0.868 (1)	0.797 (1)	$0 \cdot 374$ (1)	$5 \cdot 8$ (3)
C4	0.664 (1)	0.905 (1)	0.4002 (9)	$5 \cdot 3$ (3)
C5	$0 \cdot 846$ (2)	0.910 (1)	0.549 (1)	$8 \cdot 1$ (5)
C6	0.924 (2)	0.836 (2)	0.483 (1)	$8 \cdot 1$ (5)
C7	0.717 (2)	0.945 (1)	0.508 (1)	7.9 (5)
C8	0.6030 (9)	0.8553)9)	0.1597 (7)	$2 \cdot 7$ (2)
C9	$0 \cdot 691$ (1)	0.3379 (9)	-0.1860 (7)	2.9 (2)
C10	0.612 (1)	0.4013 (9)	-0.2446 (7)	$2 \cdot 8$ (2)
Cl 1	0.561 (1)	0.3667 (9)	-0.3611 (7)	$3 \cdot 2$ (2)
C12	0.431 (1)	0.398 (1)	-0.4042 (9)	$4 \cdot 7$ (3)
C13	$0 \cdot 645$ (1)	0.305 (1)	-0.4243 (9)	$4 \cdot 7$ (3)
C14	0.384 (2)	0.362 (1)	-0.5134 (9)	6.4 (4)
C15	0.464 (2)	0.297 (1)	-0.5768 (9)	6.8 (4)
C16	0.595 (2)	0.272 (1)	-0.5345 (9)	$6 \cdot 2$ (4)
C17	0.566 (1)	0.9941 (9)	0.1922 (8)	$3 \cdot 6$ (2)
C18	0.6377 (9)	0.6398 (9)	0.0328 (7)	$2 \cdot 5$ (2)
C19	0.640 (1)	0.5419 (9)	-0.0560 (7)	$2 \cdot 7$ (2)
C20	0.750 (1)	0.211 (1)	-0.2217 (8)	$4 \cdot 2$ (3)
Cl 5	-0.1758 (6)	0.3541 (7)	0.3146 (5)	14.4 (2)
C16	0.0647 (6)	0.4777 (5)	0.2865 (7)	14.2 (3)
C21	-0.040 (2)	0.344 (2)	0.255 (1)	$7 \cdot 6$ (5)

Table 2. Selected bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Rel-Rel	$2 \cdot 2231$ (6)	Rel-Cl1	$2 \cdot 306$ (3)
Rel-Cl2	$2 \cdot 318$ (3)	Rel-Cl3	2.317 (3)
Rel-Cl4	$2 \cdot 315$ (2)	Sl-Cl	1.750 (9)
$\mathrm{Sl}-\mathrm{Cl} 8$	1.712 (9)	S2-C10	1.747 (9)
S2-C19	1.697 (9)	S3-C9	1.730 (9)
S3-C19	1.72 (1)	S4-C8	1.719 (9)
S4-C18	1.71 (1)	$\mathrm{Cl}-\mathrm{C} 8$	1.34 (1)
C9-C10	1.32 (1)	C18-C19	1.38 (1)
$\mathrm{C} 21-\mathrm{Cl} 5$	1.71 (2)	C21-C16	1.65 (2)
Rel-Rel-Cll	$103 \cdot 14$ (7)	Rel-Rel-Cl2	10487 (8)
Rel-Rel-Cl3	$103 \cdot 00$ (6)	Rel-Rel-Cl4	104.06 (8)
$\mathrm{Cl1}-\mathrm{Rel}-\mathrm{Cl} 2$	86.8 (1)	Cll-Rel-Cl3	86.8 (1)
$\mathrm{Cl} 1-\mathrm{Rel}-\mathrm{Cl} 4$	152.8 (1)	$\mathrm{Cl} 2-\mathrm{Rel}-\mathrm{Cl} 3$	152.1 (1)
$\mathrm{Cl} 2-\mathrm{Rel}-\mathrm{Cl} 4$	86.7 (1)	Cl3-Rel-Cl4	86.75 (9)
$\mathrm{Cl}-\mathrm{Sl}-\mathrm{Cl} 8$	95.9 (5)	C8-S4-Cl8	97.2 (4)
$\mathrm{C} 9-\mathrm{S3-Cl} 9$	95.9 (5)	C10-S2-C19	96.0 (5)
$\mathrm{S} 1-\mathrm{Cl}-\mathrm{C} 8$	116.3 (6)	$\mathrm{S} 4-\mathrm{C} 8-\mathrm{Cl}$	116.2 (7)
S1-C18-S4	114.3 (5)	Sl-C18-C19	$123 \cdot 1$ (8)
S2-C19-S3	114.8 (5)	S2-C19-C18	$122 \cdot 5$ (8)

MicroVAX 3100 using the SDP programs (B. A. Frenz \& Associates, Inc., 1985). Table 1* gives the atomic coordinates and Table 2 selected bond distances and bond angles. Fig. 1 shows the intradimer overlap with the numbering scheme and Fig. 2 the crystal structure packing.

[^1]Related literature. The $\mathrm{Re}_{2} \mathrm{Cl}_{8}$ unit has an eclipsed configuration with the following averaged bond lengths: $\operatorname{Re}-\operatorname{Re} 2 \cdot 2231$ (6) and $\operatorname{Re}-\mathrm{Cl} 2 \cdot 314$ (3) \AA. These are in agreement with those observed in $\left(\mathrm{Bu}_{4} \mathrm{~N}_{2} \mathrm{Re}_{2} \mathrm{Cl}_{8}\right.$ (Cotton \& Hall, 1977). The DMDPhTTF molecule has a trans configuration while the phenyl rings do not assume a planar conformation with the central TTF fragment. The dihedral angles are $33 \cdot 3$ and $37 \cdot 0^{\circ}$. The molecule can be considered in the formal valence state $\mathrm{DMDPhTTF}^{+}$as there are only two molecules per one anionic unit. The structure consists of isolated dimers, in which the overlap is of the ring-over-ring

Fig. 1. Atomic numbering and intradimer overlap: A hatched circle (x, y, z) and $B(1-x, 1-y,-z)$.

Fig. 2. Evidence of mixed stacks containing organic and inorganic blocks and cavities containing the solvent molecules. Intradimer interactions: $S_{1}-S_{2}^{*}=3.476$ (4), $S_{3}-S_{4}^{*}=3 \cdot 521$ (4) \AA (* symmetry: $1-x, 1-y,-z$).
type, piled up along the [110] direction. It can be described as mixed stacks of alternating organic and inorganic dimers (Fig. 2).

References

B. A. Frenz \& Associates, Inc. (1985). SDP Structure Determination Package. College Station, Texas, USA, and EnrafNonius, Delft, The Netherlands.

Cotton, F. A. \& Hall, W. T. (1977). Inorg. Chem. 16, 18671871.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1984). Multan84. a System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Takamisawa, A. \& Hirai, K. (1969). Chem. Pharm. Bull. 17, 1931-1936.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Structure of Dicarbonylbis $\left(\boldsymbol{\eta}^{2}\right.$-dimethyl 7-acetyl-7-azabicyclo[2.2.1]hept-2-ene-2,3-dicarboxylate- κ N)molybdenum(0)

By Ju-Chun Wang* and Chia-Hsing Sun
Department of Chemistry, Soochow University, Taipei, Taiwan
and Tahsin J. Chow and Ling-Kang Liu
Institute of Chemistry, Academia Sinica, Taipei, Taiwan

(Received 13 November 1990; accepted 18 June 1991)

Abstract

Mo}\left(\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{10}\right)(\mathrm{CO})_{2}\right], \quad M_{r}=662 \cdot 51\), monoclinic, $C 2 / c, a=61.3502$ (41), $b=10.4370$ (4), $c=17.7387(14) \AA, \quad \beta=99.742(6)^{\circ}, \quad V=$ $11194.5(18) \AA^{3}, \quad Z=16, \quad D_{x}=1.57 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.54056 \AA, \quad \mu=44.7 \mathrm{~cm}^{-1}, \quad F(000)=$ $5472, T=298 \mathrm{~K}, R=0.046$ for 7459 reflections with $I>3 \sigma(I)$. There are two independent molecules per unit cell. In each molecule, two CO groups are cis to each other with Mo-CO distances from 1.955 (5) to 1.982 (7) \AA. Two substituted double bonds are bound to the Mo atom [Mo-C from 2.193 (6) to $2 \cdot 238$ (6) \AA]. The $\mathrm{C}-\mathrm{C}$ distances for bound and non-bound double bonds are 1.437 (8) and 1.34 (1) \AA, respectively. The Mo-N distances are $2 \cdot 336$ (4), $2 \cdot 347$ (5), $2 \cdot 361$ (5) and $2 \cdot 339$ (5) \AA.

Experimental. The title compound, $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{MoN}_{2} \mathrm{O}_{12}$, was synthesized as reported by Sun \& Chow (1988). Yellow crystals were grown from $\mathrm{Et}_{2} \mathrm{O}$. A suitable prism crystal with dimensions $0.15 \times 0.20 \times 0.30 \mathrm{~mm}$ was mounted on a glass fiber with epoxy resin. Cell constants were derived from least-squares refinement of 25 reflections having $50<2 \theta<52^{\circ}$. Intensity data were collected at room temperature using the $\theta / 2 \theta$ scanning technique on an Enraf-Nonius CAD-4 diffractometer with monochromated $\mathrm{Cu} K \alpha$ radiation. A total of 9595 reflections were measured with $0<$

[^2]0108-2701/91/112459-03\$03.00
$2 \theta<130^{\circ}(h=-72$ to $70, k=0$ to $12, l=0$ to 20), which were averaged to 9305 unique reflections with $R_{\text {int }}=0.019$. Three standard reflections ($17 \overline{3} 6$, $\overline{173} \overline{6}, \overline{6} 47)$ were measured every 7200 s and only small ($<3 \%$) random variations were observed. Lorentz and polarization corrections were applied. An empirical absorption correction based on a series of ψ scans was applied to the data: $T_{\text {min }}=0.863$, $T_{\max }=0.999$. The space group, $C 2 / c$, was determined by systematic absences ($h k l, h+k=o d d ; 0 k 0, k=$ odd; $h 0 l, l=$ odd).
The structure was solved by heavy-atom methods using SHELXS86 (Sheldrick, 1986) which revealed two independent positions of Mo. The remaining non-H atoms were located in successive difference Fourier syntheses. H atoms were not included in calculations. Atomic scattering factors including anomalous dispersion were taken from International Tables for X-ray Crystallography (1974, Vol. IV).
The structure was refined with full-matrix least squares using Personal SDP (B. A. Frenz \& Associates, Inc., 1989) on a 80386 -based IBM compatible PC. All atoms were refined anisotropically. $\sum w\left(\left|F_{o}\right|\right.$ $\left.-\left|F_{c}\right|\right)^{2}$ was minimized, where $w=4 F_{o}^{2} /\left[\sigma^{2}(I)+\right.$ $0 \cdot 01 F_{o}^{2}$]. A secondary-extinction coefficient refined to a value of $\chi=2.22 \times 10^{-7}$, where the correction factor $\left(1+\chi I_{c}\right)^{-1}$ was applied to F_{c}. The final $R=$ $0.046, w R=0.061, R_{\text {all }}=0.059$ and $S=3.137$ were obtained using 740 variables and 7459 observed
(c) 1991 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54374 (20 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed.

